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Abstract

I develop an aggregative model of an economy's production function that links the level

and distribution of automation technology at the micro- (�rm-) level to macro features

including TFP, factor shares and the elasticity of substitution between labor and cap-

ital. I show conditions under which the economy features balanced growth, even with

sustained improvements in automation technology. As an application of the theory,

this paper investigates the extent to which automation can explain the observed fall in

labor's share of income in the United States in the last 30 years. I model the produc-

tion process as a set of tasks that can be performed by labor or automation capital.

Aggregating over �rms that operate capital with di�ering degrees of automation, total

output of the economy is given by a Constant Elasticity of Substitution (CES) func-

tion, but with parameters determined endogenously by the distribution of automation

technology across �rms. This model of the aggregate production function can reconcile

three important empirical �ndings on US production and growth that the canonical

CES model cannot: declining labor shares, aggregate capital-labor complementarity,

and capital-biased technical progress. Using industry-level data, including a novel mea-

sure of aggregate task inputs into production, I �nd evidence that automation was a

signi�cant driving force of the US labor share between 1972-2010.
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Katarína Borovi£ková, Daniel Greenwald, Boyan Jovanovic, Ricardo Lagos, Matthias Kehrig, Diego Perez,
Venky Venkateswaran and Gianluca Violante for many comments, suggestions and insights. Contact details:
jmartinez@london.edu; www.josebamartinez.com.
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1 Introduction

Labor's share of income in the United States has fallen over the last 30 years. This paper

develops a theoretical model of the link between automation and the labor share and, through

the lens of the model, provides evidence on the extent to which the observed decline might

have been caused by automation.

Automation in the model is a form of embodied technical progress that enables the

replacement of workers with capital in the completion of production tasks. Firms operate

capital with varying degrees of automation: some �rms' capital can perform a greater range of

production tasks than others. Aggregate output in this economy can be represented using the

canonical constant elasticity of substitution (CES) function with capital and labor aggregates

as inputs; but with parameters that are themselves functions of the level and distribution

of automation technology in the economy. This model of the aggregate production function

delivers a sharp characterization of the e�ect of automation on the labor share: the labor

share decreases if the most automated �rms in the economy become more automated; but

increases if the least automated �rms become more automated.

To assess the empirical validity of this prediction, I construct a measure of aggregate

task inputs into production in the US economy by combining census data from the Current

Population Survey with detailed occupation level data from the Occupational Information

Network (O*NET). The use of job task data to study labor market outcomes is by now well

established, notably in the literature following Autor et al. (2003) that studies the e�ect of

technology on job polarization among other labor market outcomes. Acemoglu and Autor

(2011) combine CPS and O*NET data to construct broad occupational/task categories. But

to my knowledge this is the �rst paper that uses this type of data as an input into a macro

accounting exercise. I combine the data on task inputs with industry-level income accounts

(from KLEMS, Jorgenson et al. (2012)) to measure the e�ect of automation on US industry

labor shares in the period 1972-2010.

The empirical �ndings suggest an important role for automation in the evolution of the

labor share at the industry level, particularly in manufacturing: the �tted model generates

more than half of the decline in the manufacturing labor share.

The aggregate elasticity of substitution - σ in the standard notation - between capital
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and labor is a crucial parameter in macroeconomics and especially in growth theory1. In

particular, the value of σ determines the response of the labor share to changes in the

capital-labor ratio: if σ > 1, so that capital and labor are gross substitutes, the labor share

decreases when the capital-labor increases, and vice versa for σ < 1. This is an important

relationship because the period over which the labor share has fallen coincides with a period

of rapid improvement in the quality of capital goods, which is usually modeled as capital-

or investment-biased technical change.

As shown by Karabarbounis and Neiman (2014), if this biased technical change leads to

increased capital accumulation and an increase in the capital-labor ratio, σ > 1 is required

to explain the falling labor share. The preponderance of empirical estimates however point

to σ < 12. Ober�eld and Raval (2014) show that, since this implies that capital accumula-

tion would increase the labor share, other forces must be driving the observed fall. In the

model of aggregate production function developed in Section 2, capital and labor are gross

complements. The dynamic model in Section 3 shows how the investment, entry and exit

decisions of �rms operating capital with di�ering degrees of automation endogenously deter-

mine the parameters of the aggregate production function. Viewed from the perspective of

the aggregate production function, capital biased technical change in the form of increased

automation lowers the labor share by increasing the capital share parameter α.

The empirical analysis in this paper focuses on industry-level labor shares. Figure 1,

which plots shares for a subset of industries, shows that trends in industry labor shares level

are both signi�cant and markedly di�erent across sectors. The empirical analysis in this

paper uses industry-level data in order to make use of the information contained in this

divergence: the conjecture that underpins the exercise is that it re�ects, at least in part, the

extent to which automation of production tasks has a�ected industries di�erentially.

Related literature This paper contributes to a growing literature that explores the link

between automation, growth, productivity and factor shares building on task-based produc-

tion models and studying the e�ect of automation on the aggregate production function. An

early contribution in this vein is Zeira (1998), who starts with the observation that labor re-

placing embodied technical progress is a long run phenomenon and develops an elegant model

1de La Grandville (2016) gives a comprehensive treatment of the importance of σ.
2See Chirinko (2008) for a survey of estimates of σ.
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Source: US KLEMS data. Labor share is compensation divided by value added. Series are HP �ltered (�lter parameter 6.25)

Figure 1: Labor shares for 6 industries, 1970-2010

in which task automation (e�ectively) changes the exponents of the aggregate Cobb-Douglas

production function, but also necessarily implies increasing capital shares and accelerating

economic growth.

The model in this paper starts from di�erent primitives but has features in common with

Acemoglu and Restrepo (2018). The authors develop a comprehensive theory of automation

featuring endogenous automation and creation of new tasks that only labor can perform

(the �race� to which the title refers); when these two forces are evenly matched, the economy

has a balanced growth path. A closely related condition has to hold for the dynamic model

described in Section 3 to have a balanced growth path. An implication of their theory is that

a long-run negative relationship between capital accumulation and the labor share does not

necessarily imply that labor and capital are gross aggregate substitutes, if the allocation of

factors to tasks is endogenous. The aggregative model of the production function developed

in this paper also has this implication, as discussed above.

Aghion et al. (2017) present a model of automation that builds on the structure of Zeira

(1998). The authors examine the ability of such a model to generate dynamics consistent

with the Kaldor growth facts. Among other insights, the model connects automation with

the emergence of a Baumol (1967) �cost disease�; the authors also explore the e�ect of a
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possible technological singularity leading to an explosion in economic growth. Hemous and

Olsen (2018) develop a model of automation and horizontal innovation that endogenously

links automation to the rise in the skilled-unskilled wage premium. Susskind (2017) develops

a model of automation in which labor is eventually completely immiserated due to the

development of �advanced capital� that can replace labor in advanced tasks. Acemoglu and

Restrepo (2017) and Mann and Puttmann (2017) study empirically the e�ect of robots and

automation technologies on US local labor market outcomes. Autor and Salomons (2018)

study the e�ect of automation on employment and the labor share in the US, and also study

the di�erential e�ects of automation using industry-level data.

This paper makes two main contributions to this literature. First, starting from an

explicit micro task production technology, the aggregation procedure I employ generates

a canonical aggregate CES production function with parameters that are determined en-

dogenously by the distribution of automation in the economy. This approach facilitates

comparison with the extant literature and can help to explain how the canonical model

might be able to accommodate features of economic growth that are at apparent odds from

the perspective of a model with a �xed aggregate production function. Second, the model

in this paper delivers a sharp characterization of the link between automation and the labor

share that is simple enough to be taken to data.

The model in this paper draws from a variety of theoretical foundations. The micro task

production function that I propose is closely related to that of Becker and Murphy (1992)

and to models in which production is organized as a hierarchy, starting with Garicano (2000)

and Garicano and Rossi-Hansberg (2006). To my knowledge, Geerolf (2017) is the �rst paper

to make explicit the link between a Garicano (2000)-type production function and the Pareto

distribution, an insight which I apply in my aggregation procedure.

The aggregation procedure I implement was �rst introduced in Houthakker (1955), which

shows that aggregation of micro-production units operating a Leontie� technology with

Pareto-distributed productivities results in a Cobb-Douglas aggregate production function.

Levhari (1968) and Sato (1975) extend the result to general CES functions, in a static set-

ting in which the productivity distribution itself is the primitive. Jones (2005) applies this

aggregation result in a growth context to think about how the aggregate production changes

over time, and how technological change matters for the shape of the production function.

This paper's central concern is similar in spirit, but my focus is on automation speci�cally.
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The model in this paper is closest to Lagos (2006), who develops an aggregative model of

total factor productivity. The model of Section 2 can be thought of as extending his work

to a model of both TFP and the share parameter (α).

The dynamic version of the model features a putty-clay vintage capital structure, �rst

introduced in Johansen (1959). The implementation of the putty-clay technology in this

model is similar to Gilchrist and Williams (2000). As in Jovanovic and Yatsenko (2012), and

in contrast to many vintage capital models, the model in this paper features investment in

both old and new vintages of capital .

This paper explores the link between the US labor share and automation; a burgeoning

literature documents recent movements in the US labor share and proposes several explana-

tions for its decline. Rognlie (2015) shows that the fall in the labor share is largely accounted

for by increased rents accruing to housing. Gutiérrez (2017), Barkai (2017), Caballero et al.

(2017) and De Loecker and Eeckhout (2017) focus on increased rents and market power.

Hartman-Glaser et al. (2017), Autor et al. (2017) and Kehrig and Vincent (2017) document

that changes in the distribution of industry output towards lower labor share �rms are re-

sponsible for the overall decline. Koh et al. (2016) suggest that the aggregate decline in the

labor share is largely accounted for by increased depreciation of intangible capital. Karabar-

bounis and Neiman (2014) focus on capital-labor substitution driven by the sustained decline

in the relative price of capital; in cross-country regressions they estimate the elasticity of

substitution parameter of a CES production function σ > 1, consistent with their hypoth-

esis. Kaymak and Schott (2018) explore the e�ect of corporate tax cuts on the US labor

share. Grossman et al. (2017) link the decline in the labor share to the global productivity

slowdown.

Ober�eld and Raval (2014) show that, given that their estimate of the aggregate elasticity

of substitution between labor and capital in manufacturing is smaller than one, increased

capital accumulation in response to the declining relative price of capital cannot explain the

decrease in the labor share in manufacturing. In fact, they �nd the opposite to be true: since

σ < 1, a higher capital-labor ratio increases the labor share. They conclude that another

mechanism, which they term generically the bias of technical change, must be at work.

Lawrence (2015) is also concerned with studying the fall in the US labor share through

the capital-labor substitution channel; his study presents evidence that growth in human

capital, and hence in the quantity of e�ective hours supplied by labor, has been so large as
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to reduce capital-labor ratios, which has the e�ect of reducing the labor share when σ < 1.

The rest of the paper is organized as follows. Section 2 develops a static model that

presents, in the simplest possible setting, the main analytical results in the paper: the

connection between moments of the size distribution of �rms operating capital with di�ering

degrees of automation to the parameters of an aggregate CES production function. Section

3 embeds this static production structure into a dynamic model which, in aggregate, closely

resembles the standard neoclassical growth model, and derives the requirements for existence

and properties of a balanced growth path of the economy. In Section 4 I present the empirical

approach; Section 5 presents evidence of the model's �t to US industry-level data and the

implications for the impact of automation on the US industry-level and aggregate labor

shares in the past 40 years. Section 6 concludes.

2 Static Model

I start with a static version of the model in order to simplify the exposition of the �rm

level technology and the aggregation result that yields a constant elasticity of substitution

(CES) macro production function. The static economy consists of a continuum of �rms,

each operating a �rm-speci�c technology to produce a homogeneous good that is sold in a

competitive market. To produce, �rms must hire labor, which is supplied by homogeneous

workers in a competitive labor market.

2.1 Firms

A continuum of competitive �rms produce a unique �nal good Y . A �rm i is characterized

by its technology ãi and capital stock ki. Technology is embodied in the capital stock, so a

�rm's capital consists of ki units of capital that embody the technology level ãi. I assume

that each �rm owns exclusive rights to its technology, so there is one �rm per technology ãi.

Technology Production of one �nal good requires the completion of a continuum of all

tasks in an interval [0, q]3. Tasks can be produced by both workers and machines. Workers

3Following Becker and Murphy (1992), the production function in terms of tasks is the Leontie� function,

y = min
0<x<q

y (x)
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can perform all tasks in [0, q],4 whereas a machine of type ã can perform tasks in [0, ã], with

ã < q. So to produce one unit of the �nal good using a machine of type ã, a worker has to

complete the remaining tasks [ã, q]. If it takes workers one unit of time to complete all tasks

in [0, q], a worker-machine pair would produce 1/ (q − ã) goods in one unit of time; I further

assume that the productivity of a worker-machine pair is increasing in the quantity of tasks,

and that the productivity gains from worker specialization are governed by a parameter

γ > 1. With these assumptions, the productivity of a worker-machine pair is given by:

z (a) =

(
q

q − ã

)γ
=

(
1

1− a

)γ
(1)

Where I de�ne a ≡ ã
q
as the fraction of total tasks that the machine can complete, which

I call the machine's (and �rm's) degree of automation. When referring to machine types,

I will adopt the notational convention that variables with a tilde measure the highest level

of task that a machine can perform, whereas variables without a tilde measure the fraction

of total production tasks that a machine can perform (this distinction will become critical

in the dynamic version of the model). The function z (a) is related to the span of control

in models in which production is organized in knowledge hierarchies as in Garicano (2000)

and Garicano and Rossi-Hansberg (2006). In those papers, productivity gains arise from

employing more knowledgeable workers at higher levels in hierarchy of production. Here,

productivity gains come from pairing workers with machines because workers are essential

to production (since ã < q) and machines save worker time by performing a portion of the

tasks required in production. The degree of productivity gains are scaled by the parameter

γ, which I interpret in the spirit of Becker and Murphy (1992) as capturing returns to worker

specialization.

Firm production function and pro�t maximization Each �rm i is characterized by

its technology ãi (equivalently, its degree of automation ai) and capital stock ki. At the

�rm level, I assume that the number of (e�ective) worker hours per machine is technologi-

cally constrained to be in �xed proportion, resulting in the following (Leontie�) production

with the interpretation that producing y goods requires that each task x be performed y (x) times.
4Assuming that workers can perform all tasks is not essential to the results but simpli�es notation and

algebra. What is important is that there are some tasks that only workers can perform.
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function for �rm i:

yi = z (ai) min (ki, H · ni) , (2)

where ki and ni are the �rm's capital stock and labor input. H is labor-augmenting pro-

ductivity, common to all workers, so that H · ni is the e�ciency adjusted number of hours

worked by �rm i's workers.

Firm size distribution I assume that each �rm has exclusive use of a technology, so there

is a one-to-one correspondence between i and ai, and I can model the �rm size distribution

as the measure of capital at each degree of automation ai. I denote this measure k (a), and

assume that it has bounded support a ∈ [a`, ah], so that a` and ah are, respectively, the least

and most automated types of capital in the economy. Since a is a fraction and I have assumed

that at least some level of worker-only tasks are needed in production, the bounds satisfy

0 ≤ a` < ah < 1. Anticipating the discussion of aggregation in the following section, the

integral of k (a) is the aggregate capital stock of the economy, K =
∫ ah
a`
k (a) da. Normalizing

the �rm size distribution by aggregate capital, I de�ne the PDF f (a) ≡ k(a)
K
, the density

function of degrees of automation in the economy. Further, I de�ne the density g (z) as the

distribution of the function z (a) given that a has density f (a). The density function g (z)

is the measure of productivities associated with a given distribution of automation. Since

f (a) is bounded, so too is g(z), with lower bound z` ≡ z (a`) and upper bound zh ≡ z (ah).

2.2 Aggregation and Equilibrium

I start by solving for aggregate labor demand. The pro�t maximization problem for a �rm

with productivity z is:

max
n

zmin (k (z) , H · n)− w · n (3)

It follows that the optimal choice of hours as a function of z is :

n (z) =


k(z)
H

if z ≥ w
H

0 if z < w
H

Since z is a function of a, I can rewrite the optimal choice of hours in terms of the degree of

automation of the marginal �rm.
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n (a) =


k(a)
H

if a ≥ aw

0 if a < aw

Where aw = 1−
(
w
H

)σ−1
.

Aggregate labor demand, N , is the integral over �rm labor choices, N =
∫ zh
z`
n (z) dz.

Substituting in the optimal choice of hours, and k (z) = K · g (z), the integral becomes

N = K
H

∫ zh
w/H

g (z) dz. Denoting by G (·) the CDF of z, integrating gives aggregate labor

demand as:

N =
K

H

[
1−G

(w
H

)]
(4)

Aggregate labor demand is the product of the total capital stock, divided by worker e�ciency,

times the fraction of active �rms (1 minus the CDF at w
H
, the term in square brackets). I

assume that workers' preferences give a labor supply function N s (w), increasing in the wage;

equating N s (w) to labor demand as in Equation 4 gives the equilibrium wage. With the

equilibrium wage in hand, aggregate output Y can be solved for as the integral over �rm-level

output, Y =
∫ zh
w/H

zk (z) dz = K
∫ zh
w/H

zg (z) dz, which can be expressed as:

Y = K
[
1−G

(w
H

)]
EG
(
z|z ≥ w

H

)
(5)

Aggregate output is the product of three terms: the capital stock, the fraction of active

�rms, and the average productivity of active �rms, given by the third term (EG
(
z|z ≥ w

H

)
=[

1−G
(
w
H

)]−1 ∫ zh
w/H

zg (z) dz).

2.3 From Automation to a CES Aggregate Production Function

Equation 5 gives aggregate output as a function of the equilibrium wage. In order to express

aggregate output in a more familiar form, as a function of capital, labor and technology, I

start with an assumption about the distribution of degrees of automation f (a). In particular,

I assume that f (a) is a 3 parameter beta distribution5, characterized by one shape parameter,

ρ, and lower and upper bounds a` and ah. The following lemma characterizes the distribution

of z(a) using this assumption.

5The standard Beta distribution is bounded in [0, 1] and characterized by two shape parameters. I restrict
one of the shape parameters to equal 1 and set the bounds to 0 < a` < ah < 1.
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Lemma 1. If a ∼ B (1, ρ; a`, ah), so that the PDF of a, f (a) = ρ (ah−a)ρ−1

(ah−a`)ρ
, then z (a) =(

1
1−a

)γ
is distributed with CDF G (z):

G (z) = 1−

1−
1−

(
z`
z

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

(6)

and z ∈ [z`, zh], with z` =
(

1
1−a`

)γ
and zh =

(
1

1−ah

)γ
.

Proof. See Appendix A.1

With γ = 1, this lemma is equivalent to the derivation in Geerolf (2017) of a Pareto-

distributed span of control in an economy with a simpli�ed Garicano (2000) production

function and a Beta distribution for worker skills. The distribution G (z), known to statisti-

cians as a truncated Beta-Pareto distribution6, is closely related to the Pareto distribution;

indeed with ρ = 1, G (z) is exactly a Pareto distribution with tail parameter 1
γ
and lower

bound z`, truncated at an upper bound zh.

The distribution G (z) generalizes the distribution derived by Sato (1969) (which in turn

extends the result in Levhari (1968)) for z` > 0. In contrast to those papers, I do not start

with G (z) as a primitive, but instead derive it from the underling distribution F (a) and

productivity function z (a). These di�erences are crucial since they allow me to develop a

theoretical link between automation and the aggregate production function, and are also

important in proving the existence of a balanced growth path and its associated stationary

distribution in the dynamic model presented in Section 3.

Before proceeding I make a further restriction on parameters: for the remainder of the

paper, I assume that γ = ρ+ 1. This is not an innocuous restriction, since in the logic of the

model γ can be thought of as a deep technological parameter that governs �rm-level returns

to automation, whereas ρ is the shape parameter of the automation distribution, which makes

it closer to an equilibrium object. The gain from imposing this restriction is substantial: as

shown in Proposition 1, with this parametrization aggregate output in the economy can

be represented exactly as a canonical CES production function. The connection between a

6Akinsete et al. (2008) and Lorenzutti et al. (2012) derive moments, MGF, etc for this distribution. I
show some of its properties in Appendix C.
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knife edge parametrization of the model and the aggregation result may seem mysterious,

but is in fact rather prosaic: it is only in the knife-edge case that the integral in Equation

5 can be solved in closed form. I have veri�ed numerically that the results presented in

this section and the next are not substantially a�ected by deviations from the knife edge

parametrization. To economize on notation and consistency with the literature, I also de�ne

ρ ≡ σ
1−σ (σ will correspond exactly to the elasticity parameter of the CES). In sum, I make

the following assumptions about the distributions F (a) and G (z):

Assumption 1: Distributions F (a) and G (z) The automation distribution F (a) and

its associated productivity distribution G (z), with z (a) =
(

1
1−a

) 1
1−σ , are:

F (a) =

(
ah − a
ah − a`

) σ
1−σ

and G (z) = 1−

1−
1−

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

The following proposition shows that, given this assumption, aggregate output can be

represented by a CES production function with elasticity of substitution 0 < σ < 1.

Proposition 1. Using Assumption 1, aggregate output for this economy can be represented

as the CES production function with elasticity of substitution 0 < σ < 1,

Y = A
(
αK

σ−1
σ + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

(7)

where H is labor-augmenting productivity and the capital (K) and labor aggregates (N) are:

K =

∫
Z

k (z) dz and N =
K

H

[
1−G

(w
H

)]
where w is the market clearing wage that solves N s (w) = N . The total factor productivity

term A and capital distribution parameter α are functions of parameters of the productivity

distribution G (z):

A = (zh)
1−σ (z`)

σ (8)
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α = 1−
(
z`
zh

)1−σ

(9)

Proof. See Appendix A.2.

Proposition 1 contains 3 linkages between the parameters of the automation distribution

F (a) and the aggregate production function. I discuss each of these in turn.

Elasticity of substitution σ The elasticity of substitution σ of the aggregate production

function is related to the shape parameter of the underlying beta distribution7. Inspecting

the CDF of a B
(
1, σ

1−σ

)
distribution, F (x) = (1− x)

σ
1−σ , the e�ect of increasing σ is to

shift mass towards the left tail of the distribution, which in the model means that �rms

with relatively low automation are relatively larger. The intuition for why this translates

into a higher elasticity of substitution is that the higher is σ, the larger is the mass of �rms

in the neighborhood of the cuto� level of automation aw, and consequently the higher is

the mass of �rms that go from active to idle in response to a small increase in the cuto�

aw (corresponding to a small increase in the wage). Because �rms in the neighborhood of

this cuto� require more labor per unit of output, in the aggregate the economy becomes

more capital intensive when these �rms shut down. In other words, the aggregate economy

substitutes towards capital in response to an increase in the wage, and this e�ect is stronger

the higher is σ.

The aggregation result in Proposition 1 requires that σ be smaller than 1. The discussion

in the previous paragraph provides a hint as to why that is the case: σ > 1 would imply that

the economy becomes more labor intensive as the wage increases. Sato (1969) shows that

this is a general existence requirement in this class of aggregative models (Mangin (2015)

proves a similar result using a very di�erent approach). This is an interesting theoretical

insight in the long-running debate about the value of σ in a macro model with an aggregate

production function.

A and α The TFP parameter A and distribution parameter α are functions of moments

of the productivity distribution G (z); as shown in the appendix, A is the mean of z and

7I have imposed γ = 1
1−σ so strictly speaking σ is also related to the returns to automation at the �rm

level. In describing the e�ect of varying σ I have in mind a local approximation leaving γ unchanged and
varying the shape parameter of the Beta distribution. The resulting aggregate production function is not an
exact CES function, but is very close to CES for small deviations.
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as such is increasing in both the lower and upper bounds of the productivity distribution.

TFP is therefore increasing in both ah and a`: the more automated the capital stock, the

higher is total factor productivity. Substituting for zh and z`, the distribution parameter α

can be expressed in terms of ah and a`, α = ah−a`
1−a`

. The distribution parameter is therefore

increasing in ah and decreasing in a` - I relegate the interpretation of this result to the

discussion of Proposition 2 below.

Proposition 2. The labor share in this economy is given by

LS =
1− ah
1− aw

(10)

Proof. The labor share with a CES production function can be expressed as:

LS = (1− α)σ Aσ−1
(w
H

)1−σ

Substituting in for A and α from Equations 8 and 9, and replacing zh =
(

1
1−ah

) 1
1−σ

and

w
H

=
(

1
1−aw

) 1
1−σ

gives the result after some algebraic manipulation.

Proposition 2 provides an easily interpretable expression for the labor share in terms of

the task distribution: the labor share is given by the ratio of the fraction of worker tasks at

the most automated �rm (1− ah) over the fraction of worker tasks at the least automated

�rm (1− aw).

Both the numerator and denominator of this ratio can be thought of as measures of

automation, but capturing di�erent margins. An increase in ah can be interpreted as an

extensive margin of automation, since an increase in ah implies that new automation tech-

nologies have been discovered and embodied as capital goods. On the other hand, an increase

in aw can be interpreted as an increase along an intensive margin: some fraction of the least

automated technologies installed in the economy is left idle, which means that the average

automation level of �rms that are still active increases.

This interpretation is related to the dynamics at work in models of innovation and di�u-

sion. Increasing ah is analogous to innovation - a jump in the technology frontier. Increasing
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aw corresponds to di�usion, since the technology of the lowest active �rm is closer to the

frontier after an increase in aw. To make the analogy to the di�usion literature more speci�c:

Benhabib et al. (2017) develop a model in which the �rm productivity distribution has a

�nite upper bound, so that both innovation (growth at the frontier) and di�usion (catch up

from �rms in the left tail of the distribution) are present; they �nd that the presence of a

�nite upper bound a�ects the key properties of the BGP equilibrium. By analogy, the model

in this paper shares uses the same �rm level technology as Lagos (2006), but in the models

of that paper �rm productivities are not bounded above (so only the �di�usion� margin is

active). At a conceptual level, adding the upper bound allows me to derive model of both

the TFP term A and capital share parameter α of the aggregate production function.

3 Dynamic Model and Balanced Growth

In this section, I embed the static structure described in the previous section into a dynamic

model that, in the aggregate, closely resembles a standard neoclassical growth model. I

add households to the model; as usual, households supply labor and make consumption and

savings decisions that determine the evolution of the capital stock.

I introduce growth into the model by assuming exogenous growth paths for three vari-

ables: the number of tasks required for the production of the �nal good, qt; the frontier

level of automation technology ãh,t and labor productivity Ht. In addition to these three

exogenous states, the endogenous aggregate states of the dynamic economy are the aggregate

capital stock Kt and the distribution of automation technology Ft (a).

The set up of the dynamic model is such that the distribution Ft (a) stays within the

Beta family that allows aggregation as per Proposition 1, which reduces the state vector from

the entire distribution Ft (a) to the three parameters that characterize the Beta: the shape

parameter σ and the upper
(
ah,t =

ãh,t
qt

)
and lower

(
a`,t =

ã`,t
qt

)
bounds of the automation

distribution. Further, I assume the shape parameter σ is constant over time, so that the

distribution can be summarized by its upper and lower bounds. From Proposition 1, this

will ensure that the aggregate production function will be CES with elasticity of substitution

σ, but the TFP parameter At and capital distribution parameter αt will be state dependent

through their dependence on the bounds of the automation distribution.

The production and investment technology in the dynamic model are closely related
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to models with putty-clay technology and irreversible investment, introduced by Johansen

(1959). The vintage capital structure in a putty-clay model with irreversible investment

is a natural way to model an economy in which di�erent types of capital coexist in the

economy at any given time. In this model, a type or vintage of capital corresponds to

capital with di�erent levels of automation. The implementation of putty-clay technology in

this model is closely related to that of Gilchrist and Williams (2000): the �rm-level Leontie�

production function leads to variable utilization, and old (less automated) capital is scrapped

endogenously as newer (more automated) capital in installed. Importantly, as in Jovanovic

and Yatsenko (2012) but in contrast to most vintage capital models, the structure of the

economy is such that investment occurs in both old and new vintages of capital.

3.1 Firms: entry, exit and investment

Firms are characterized by two state variables: a technology level ãi and a �rm-speci�c capital

stock ki,t (for simplicity I refer to a unit of capital as a machine). I start by describing the

production and investment decision of an incumbent �rm, followed by the endogenous exit

and entry decisions.

Incumbent �rms A �rm is characterized by its level of automation ai,t = ãi
qt
and capital

stock ki,t and produces �nal output by combining capital and labor (ni,t) in the Leontie�

production function yi,t = z (ai,t) min [ki,t, Ht · ni,t], where z (ai,t) =
(

1
1−ai,t

) 1
1−σ

. Given the

Leontie� technology, the �rms' optimal choice of hours is given by a cuto� rule: �rms with

productivity z (ai,t) <
wt
Ht

do not hire labor in period t, so their capital remains idle. The

�rm's pro�t function is therefore given by:

π (ai,t) = max

[
z (ai,t)−

wt
Ht

, 0

]
(11)

A �rm's technology level ãi is �xed when it enters (�rm entry is described in detail below).

Each �rm has a monopoly on the operation of its technology and on the creation of new

machines that embody that technology. However, because the number of tasks required to

produce �nal output, qt, changes over time, a �rms degree of automation, ai,t = ãi
qt

is not

constant over time. In particular, the degree of automation of a machine that can perform
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tasks up to ãi decreases over time if qt grows, since that machine is less automated relative

to the number of tasks that workers perform. This gives rise to technological obsolescence

and endogenous scrapping (described below). The law of motion for ai,t is:

ai,t+1 =
ãi
qt+1

=
qt
qt+1

ai,t (12)

At the end of each period, the �rm has to pay a maintenance cost κ > 0 per machine

to keep a machine operational. If the �rm does not pay the maintenance cost, the machine

depreciates completely at the end of the period. In addition, machines fail with i.i.d. proba-

bility δ. I denote the value of a �rm with capital ki,t and automation ai,t by V (ai,t, ki,t) and

the value of one machine of type ai,t by v (ai,t). The value function v (ai,t) is given by:

v (ai,t) = π (ai,t) + 1 [(1− δ)Rt+1v (ai,t+1)− κ] (13)

The indicator function captures the �rm's decision to either pay the maintenance cost or

scrap the machine. The continuation value of the machine is the discounted value net of

the maintenance cost. Incumbent �rms with machines that have positive (net) continuation

value invest and grow their capital stock. Each �rm solves the following investment decision,

subject to a non-negativity constraint on investment:

max
ιi,t

Rt+1V (ai,t+1, ki,t+1)− Φ (ai,t+1, ιi,t) (14)

s.t. ιi,t ≥ 0

ki,t+1 = (1− δ) ki,t + ιi,t

Where C is an increasing function such that the marginal cost of creating machines is in-

creasing in the level of automation. The function Φ determines the quantity of investment

at each level of automation, so is critical in determining the evolution of the distribution of

automation. I return to this point in Section 3.2. The FOC for the investment decision is

Φι = Rt+1Vk, where Φι and Vk denote the derivatives of the cost and value functions with

respect to investment and the capital stock; at the optimum level of investment, the marginal

cost of creating a new machine is equated to marginal bene�t. Since the discounted value
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on the right hand side is strictly positive (otherwise machines of that type would have been

scrapped) and Φι > 0, the non-negativity constraint does not bind, and any �rm that does

not scrap its capital has strictly positive investment. The law of motion for �rm-speci�c

capital is ki,t+1 = (1− δ) ki,t + ιi,t.

Scrapping and �rm exit The scrapping threshold at the end of the period is de�ned

implicitly by (1− δ)Rt+1v (a`,t+1) = κ: the automation level of the lowest machine installed

at the beginning of time t is a`,t, so the scrapping threshold condition implies that machines

in (a`,t, a`,t+1] are scrapped each period, and the �rms that own those technologies exit. In

terms of the CDF of the automation distribution, the fraction of capital that is scrapped at

the end of time t is ςt = Ft (a`,t+1).

New automation technologies and �rm entry In each period, new automation tech-

nologies (ãh,t, ãh,t+1) are discovered. Each of these new technologies are allocated at random

to new �rms, so that ãh,t+1 − ãh,t new �rms are created each period. The new �rms create

capital goods that embody these new technologies, solving the following initial investment

problem:

max
ki,t+1

Rt+1V (ai,t+1, ki,t+1)− ΦN (ai,t+1, ki,t+1) (15)

As with investment by incumbents, the FOC equates the marginal bene�t to the marginal

cost of new capital.

3.2 Dynamics of the automation distribution Ft (a)

The evolution of the automation distribution Ft (a) is determined by the investment decisions

of incumbents and new entrants, and the scrapping decision of exiting �rms. Denoting by

Jt (a) the distribution of investment, the law of motion of F (a) in general is a complicated

map from (Ft (a) , Jt (a)) to Ft+1 (a). I directly assume that the functions Φ (•) and ΦN (•),
the investment cost functions for incumbents and new entrants, respectively, are such that

the resulting optimal investment policies ensure that the distribution Ft (a) is a beta distri-

bution with invariant shape parameter σ for all t, which in turn implies that the aggregate

productino functino of the economy is CES with invariant elasticity of substitution. Further,
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given the assumption of exogenous growth in ãh,t and qt, the upper bound of Ft evolves ex-

ogenously. The problem of tracking the automation distribution is therefore reduced to the

law of motion of the lower bound a`,t of the distribution.

3.3 Households

The representative household chooses consumption Ct, investment It and labor supply Nt

every period to maximize the following intertemporal problem:

max
Ct,It,Nt

∞∑
t=0

βtU (Ct, Nt) (16)

Subject to the budget constraint:

Ct + PI,tIt = wtNt + rK,tKt (17)

Where PI,t is the price of investment goods and rK,t is the rental rate of capital. The

equilibrium conditions from household optimization are the standard intratemporal labor

supply condition and an intertemporal Euler equation:

UN,t = −UC,twt (18)

UC,t = β

[
UC,t+1

(
PI,t+1 (1− δ) (1− ςt+1) + rK,t+1

PI,t

)]
(19)

Where the utility function U (C,N) satis�es the conditions required for balanced growth (as

in King et al. (1988)). The aggregate capital stock has the following law of motion:

Kt+1 = (1− δ) (1− ςt)Kt + It (20)

Where δ is exogenous depreciation and ςt is the fraction of the capital stock that is scrapped

every period due to obsolescence.
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3.4 Equilibrium and balanced growth

An equilibrium of the dynamic model consists of sequences of: (i) prices {wt, PI,t, rK,t};
(ii) aggregate allocations {Ct, It, Nt}; (iii) �rm allocations {ιi,t, n,it}; and (iv) �rm exit

decisions, such that household and �rm equilibrium conditions are satis�ed and markets for

the �nal good and savings clear. Market clearing in �nal goods requires that total �nal goods

output is either consumed or invested:

Yt = Ct + PI,tIT (21)

and savings market clearing requires that savings PI,tIt equal aggregate investment expen-

ditures:

PI,tIt =

∫ ah,t+1

a`,t+1

pt (a) ιt (a) da (22)

Where ιt (a) is the investment choice of a �rm with automation level a.

Balanced Growth I now show that the model has a steady state with constant growth

that satis�es the Jones and Scrimgeour (2008) de�nition of a balanced growth path. Namely,

quantities {Yt, Ct, It, Kt} grow at constant rates and factor shares are constant and strictly

positive. I add to the usual de�nition of the balanced growth path the requirement that the

automation distribution F (a) is stationary. In fact, as shown below, stationarity of F (a) is

a necessary and su�cient condition for a balanced growth path.

Since aggregate output in this economy can be represented as the following CES produc-

tion function with elasticity of substitution σ < 1:

Yt = At

(
αtK

σ−1
σ

t + (1− αt) (Ht ·Nt)
σ−1
σ

) σ
σ−1

the conditions for the existence of a balanced growth path follow from the Uzawa (1961)

growth theorem, which states that the balanced growth path exists only if all technological

growth is labor augmenting. This requires that the TFP term At = (zh,t)
1−σ (z`,t)

σ is constant

in steady state. Substituting in the de�nitions for zh and z` in terms of the bounds of the

automation distribution F (a) gives At =
(

1
1−ah,t

)(
1

1−a`,t

) σ
1−σ

. Constant TFP therefore

requires that ah =
ãh,t
qt

and a` =
ã`,t
qt

are both constant in the steady state, so qt, ãh,t, ã`,t
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must grow at the same rate; and that σ is constant. Since ah, a` and σ fully characterize

the distribution F (a), the conditions for constant TFP in the steady state and stationarity

of the distribution F (a) are the same.

Assuming that the labor-augmenting factor Ht grows at a constant growth rate 1 + g =
Ht+1

Ht
, in the balanced growth path {Yt, Ct, It, Kt} also grow at rate g. This implies that

there is no long run growth from automation, and that the distribution of automation F (a)

does not a�ect the steady state growth rate. The automation distribution does, however,

determine factor shares in the balanced growth path. From Proposition 2, the labor share

is LS = 1−ah
1−aw . Since balanced growth is consistent with any ah and aw (as long as 0 < aw <

ah < 1), the model has a continuum of balanced growth paths indexed by the steady state

labor share. In terms of the parameters of CES aggregate production function, there is a

balanced growth path for any α ∈ (0, 1).

At a conceptual level the model can therefore rationalize trends in factor shares as tran-

sitions between balanced growth paths brought about by periods of unbalanced growth in

the number of tasks required in production, qt, and the frontier automation technology ãh,t.

4 Measuring Automation in the Data

In this section I show how to take the model of automation presented above to data, with

the objective of measuring the contribution of automation to changes in labor's share of US

GDP. To do so I apply the model described in Section 3 to industry-level data. I will think of

each industry in the US economy as consisting of �rms operating �rm-speci�c technologies

to produce an industry-speci�c good, and of the wage in each industry as being determined

in an industry-speci�c labor market. In the background, preferences and the investment

technology aggregate the output of the di�erent industries into a �nal consumption and

investment good, but I do not model these explicitly; instead, to aggregate the output and

labor shares of all industries I use output shares directly from the data. Denoting by Y Sj an

industry's share of overall output and by LSj an industry's labor share, one can decompose

the change in the aggregate labor share into �shift� and �share� components around expansion
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Decade ∆LSUS Shift Share
1972-80 -0.01 -0.00 -0.01
1980-90 0.02 0.01 0.01
1990-00 0.01 0.00 0.01
2000-10 -0.06 -0.06 0.00

Source: US KLEMS. Calculations exclude public sector and FIRE.

Table 1: Shift and Share Components of Change in US Labor Share, 1972-2010

points Y Sj and LSj:

∆LSUS =
∑
j

Y Sj∆LSj︸ ︷︷ ︸
Shift

+
∑
j

LSj∆Y Sj︸ ︷︷ ︸
Share

(23)

The shift component measures the contribution of within-sector changes, and the share

component measures the contribution of cross-industry reallocation. The objective of the

empirical exercise in Section 5 is to explore the model's ability to explain the shift component,

taking the share component from the data.

As Table 1 shows, the share component is certainly an important one: trends in the

industrial composition of the US economy have a �rst order e�ect on the macro aggregates

that I study. But explaining these trends is a signi�cant challenge in its own right and

beyond the scope of this paper.

Applying Equation 10 to each sector j, the labor share expressed in terms of the frontier

(ah) and marginal (aw) automation technologies is:

LSj,t ≡
wj,tNj,t

Yj,t
=

1− ah,j,t
1− aw,j,t

(24)

I detail below the steps taken to take this sharp prediction implied by the model to the data.

To do so, I combine macro- and micro-data at the industry level with detailed occupation-

level task data to measure task inputs into production at the industry level. I start by

deriving model measurements of total and machine task inputs into production before de-

scribing the measurement of these objects in the data.
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4.1 Task production in the model

I start by deriving model expressions for the aggregate amount of worker and machine tasks

required to produce a given level output.

Starting at the �rm level, to produce one unit of output, workers at a a �rm operating

capital that can complete tasks up to ãi have to complete tasks qt − ãi8. Firm i's workers

therefore complete a total of

λi,t ≡ yi,t (qt − ãi) = yi,tqt (1− ai,t) (25)

tasks. Firm i's machines complete the complementary fraction of tasks,

µi,t ≡ yi,tqtai,t (26)

Total task production at the �rm level λi,t + µi,t = qtyi,t is increasing in the total number

of tasks required for production and in the quantity of output. To obtain aggregate task

inputs, I integrate λi,t and µi,t over the set of �rms. In Appendix B.1, I derive the following

expressions for total worker (Λt) and capital (Mt) task inputs per unit of e�ective labor

input:

Λt =qtEF,t [1− a|a > aw,t] (27)

Mt = qtEF,t [a|a > aw,t] (28)

The expressions are intuitive: the total number of worker (capital) tasks per e�ective worker

hour (Ht ·Nt) is the total number of tasks qt times the average fraction of worker (capital)

tasks among active �rms (�rms with a > aw,t).

4.2 Model measurement equations

Assuming we can observe Λt and Mt in the data, Equations 27 and 28 form a system of two

observables and three latent variables: qt, ah,t and aw,t. Taking the ratio Λt
Mt

eliminates one

8To economize on subscripts, I omit the industry subscript j except when necessary to avoid confusion.
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of these latest variables, qt, since the ratio of worker to machine tasks doesn't scale with

the total number of tasks qt. Taking this ratio as a departure, I show in Appendix B.1 how

to derive the following measurement equation by making a log-linear approximation around

ah,t−1 and aw,t−1

∆ log Λt −∆ logMt = χh,t∆ log ah,t + χw,t∆ log aw,t (29)

Where ∆ denotes the time di�erence operator and χh,t and χw,t are time dependent coe�-

cients (the time dependence comes from successively approximating around the lagged values

ah,t−1 and aw,t−1). Equation 29 is one measurement equation that I will take to the data. To

obtain a second, I start with the de�nition of aw,t as the level of automation of the marginal

active �rm, wt
Ht

=
(

1
1−aw,t

) 1
1−σ

. Solving for 1− aw,t gives:

1− aw,t =

(
wt
Ht

)σ−1

(30)

Assuming ∆ log Λt, ∆ logMt, wt and Ht are observable, Equations 29 and 30 form a system

of two measurement equations and two latent variables, aw,t and ah,t. The following section

describes the measurement of the required variables in the data.

4.3 Data

I use three data sources to measure wages (wj,t), labor augmenting productivity (Hj,t),

workers tasks (∆ log Λj,t), and machine tasks (∆ logMj,t). Table 2 summarizes the data used

in the empirical exercise.

Data Source

ŵj,t Real hourly wage KLEMS

Ĥj,t Labor services per hour KLEMS

Λ̂j,t Total task inputs CPS and O*NET

Λ̂M,t Automatable task inputs CPS and O*NET

Table 2: Data Used in Empirical Exercise

Industry wages wj,t and labor input quality Hj,t come from the World KLEMS database
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for the US, as described in Jorgenson et al. (2012). I also use KLEMS data to construct

industry-level labor and value added shares. I measure ∆ log âw,j,t by taking a �rst order

approximation of Equation 30, and using KLEMS data on wages and labor services per hour.

∆ log âw,j,t = (1− σ)
1− âw,j,t−1

âw,j,t−1

(
∆ log ŵj,t −∆ log Ĥj,t

)
(31)

4.3.1 Measuring task inputs into production

To measure task inputs into production, I combine Current Population Survey (CPS) data

obtained from the IPUMS-USA database (Flood et al. (2017)) and task data from the US

Occupational Information Network (O*NET). This is done in two steps: from the CPS I

measure hours worked by employees in di�erent occupations by year and industry; from

O*NET I obtain measures of task inputs in each occupation. Multiplying year-industry-

occupation hours by the corresponding measure of task inputs, I obtain a measure of worker

task inputs in production. I now describe this procedure in detail.

The O*NET database consists of detailed data on a large number (approximately 1100) of

individual occupations in the US economy. Each occupation is described by several numerical

evaluations of the tasks performed by workers, as well as the the knowledge, skills, and

abilities required to perform said tasks. To construct my baseline measure of task input

in each occupation, I add the number of tasks reported as relevant for each occupation,

weighted by each tasks relevance score. The score corresponds the fraction of workers in

that occupation that reported that a given task is relevant to their job. At the level of detail

at which I construct this measure, there are approximately 330 di�erent tasks.

Using CPS data from 1972-2010, I construct measures of hours worked by year, indus-

try and occupation. I multiply these occupation level variables by the corresponding task

input measure from O*NET and sum over occupations to construct year-industry-task hour

variables. The sum over tasks of this measure, divided by the total number of hours worked

within each industry and the labor input quality from KLEMS, is my data counterpart to

Λj,t as de�ned in equation 27.

Λ̂j,t ≡
∑
Tasks

∑
Occ

(
Occupation Hoursj,t ×Occupation Task Input

Ĥj,tN̂j,t

)
(32)
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The �nal step is to construct a data counterpart to ∆ logMj.t, the log change in machine

tasks. To do so, I designate a subset of the total tasks in the O*NET sample as automatable.

I follow the extensive literature on automation and job polarization starting with Autor et al.

(2003), in designating routine tasks as automatable. I denote the sum of this subset of tasks

Λ̂M,j,t, de�ned analogously to Λ̂j,t:

Λ̂M,j,t ≡
∑

Auto Tasks

∑
Occ

(
Occupation Hoursj,t ×Occupation Task Input

Ĥj,tN̂j,t

)
(33)

To obtain the log change in tasks performed by machines (∆ log M̂j,t) from the log change

in automatable tasks ∆ log Λ̂M,j,t, I derive the following expression in Appendix B.1:

∆ log M̂j,t = −Λ̂M,j,t−1

Λ̂j,t−1

Λ̂j,t−1

M̂j,t−1

∆ log Λ̂M,j,t (34)

With these expressions in hand, I solve for

∆ log âh,j,t =
1

χh,j,t

(
∆ log Λ̂j,t −∆ log M̂j,t − χw,j,t∆ log âw,j,t

)
which allows me to derive the model-implied labor share in each sector.

5 Automation and the Labor Share

In this section I describe the procedure used to �t the model to industry level data and

present the results.

5.1 Fitting the model to data

In this section I explore the �t of model implied labor shares to industry labor share data

from KLEMS. Given the data set
{
ŵj,t, Ĥj,t, ∆ log Λ̂j,t ,∆ log M̂j,t

}T
t=1

for each sector j, two

parameters fully determine the model-implied path of industry labor shares: the elasticity of

substitution, σj, and the automation level of the lowest active �rm at the start of the sample,

âw,j,0. With these two parameters, the entire sequence of âh,j, âw,j and hence L̂Sj =
1−âh,j
1−âw,j

can be solved for each industry j as follows:
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1. Solve for âh,j,0 using the labor share from the data at time zero and âw,j,0, âh,j,0 =

1− LSj,0 (1− aw,j,0)

2. Solve for
{

∆ log âw,j,t = (1− σ)
1−âw,j,t−1

âw,j,t−1

(
∆ log ŵj,t −∆ log ÂN,j,t

)}T
t=1

starting from

âw,j,0 and updating âw,j,t+1 = âw,j,t × exp (∆ log âw,j,t).

3. Iteratively solve for ∆ log âh,j,t = 1
χh,j,t

(
∆ log Λ̂jt −∆ log M̂jt − χw,j,t∆ log âw,j,t

)
and

update âh,j,t+1 = âh,j,t × exp (∆ log âh,j,t). The iteration is necessary because the coef-

�cients χh,j,t and χw,j,t depend on âh,j,t−1 and âw,j,t−1.

4. Construct L̂Sj =
1−âh,j
1−âw,j

To �nd the best �t of the model to the data, I numerically solve the following quadratic

distance minimization problem between the model implied and KLEMS data industry labor

share:

min
σ̂j ,âw,j,0

T∑
t=0

(
L̂Sj,t − LSj,t

)2

(35)

The σ̂j and âw,j,0 that minimize 35 are found by iterating over steps 1-4 above.

5.2 Results

In mapping the data to the model I am thinking of the economy as being on its balanced

growth path at each point of observation. To focus on these low frequency movements, I �lter

the data using an HP �lter with parameter 6.25 (the recommended parameter for annual

data in Ravn and Uhlig (2002)).

Figure 2 plots the data and model-implied labor shares for 12 industries (comprising the

business sector excluding �nance, insurance and real estate) by value added in 1972. Table

3 shows the data and model implied change in the industry labor share, R2, best �t σ̂ and

model-implied increase in âh and âw for those industries for which the model has a positive

R2. The �t of the model to the low frequency dynamics of industry-level labor shares varies

signi�cantly between industries. Of the 6 largest sectors by value added share in 1972, the

model does reasonable well in �tting the low frequency trends in manufacturing, health and

professional and business services, but poorly for retail and wholesale trade, construction

and education. The model does not resort to extreme values of σ to �t the low frequency
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dynamics; for example the value of σ̂ for manufacturing is 0.86; Ober�eld and Raval (2014)

estimate a σ in manufacturing around 0.75 in 2007. To form an idea of the overall �t of

the model, Figure 3 plots the model implied aggregate labor share taking the value added

of each sector from the KLEMS data.

Industry ∆LS (data) ∆LS (model) R2 σ̂ ∆âh ∆âw

Manufacturing -0.18 -0.11 0.58 0.86 0.12 0.03
Health 0.08 0.09 0.81 0.93 -0.07 0.03

Prof. and Bus. Services 0.08 0.11 0.63 0.95 -0.05 0.02
Agriculture 0.05 0.08 0.71 0.84 -0.06 0.03
Information -0.19 -0.15 0.63 0.91 0.18 0.05

Accommodation and Food -0.12 -0.09 0.27 0.73 0.10 0
L-R: Change in LS in KLEMS data; change in LS in model; R2 of �tted model; best �t σ; model implied change in ah; model

implied change in aw. All data are fed into model after HP �ltering with �lter parameter 6.25.

Table 3: Results Fitting Model to KLEMS labor share data, 1972-2010

To illustrate the e�ect of automation on the industry and aggregate labor shares, Fig-

ure 4 plots the aggregate labor share and the labor share in manufacturing keeping âh,t in

manufacturing constant at its time zero value. The interpretation of this counterfactual is

that the margin of automation that operates through the discovery of improved automation

technologies is held constant, but the margin that operates through varying the lowest level

of automation remains active. Within manufacturing, the labor share increases by approxi-

mately 0.02 in the counterfactual scenario, so is approximately 0.12 higher by 2010 than in

the model baseline; the aggregate labor share is 0.02 higher in the counterfactual than in the

baseline.

A concern with the analysis as it applies to manufacturing is that it is also by far the

sector that is most exposed to import competition and o�shoring of jobs. Gutiérrez and

Philippon (2017) present evidence on the e�ect of competition from China on the US man-

ufacturing industry. The authors show that mean import penetration of Chinese imports

across manufacturing was close to zero in 1990, had risen to around 4% by 2000, and in-

creased to 20% by 2015. Other measures of the e�ect of Chinese competition, such as entry

and exit rates by exposure to Chinese competition, show a similar temporal pattern: a slow

increase from a low base between 1990-2000, and a sharp acceleration thereafter. My results

on the e�ect of automation on the manufacturing labor share (see top left panel of Figure
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1) fail to match the sharp decline in the labor share that is evident in the KLEMS data

post-2000, which may be due to the increased in�uence of o�shoring and other e�ects of

foreign competition.

Overall, the empirical exercise provides suggestive evidence of an important role for

automation in driving industry-level labor shares. One salient discrepancy between model

and data is that the model fails to match most of the steep post-2000 drop in the aggregate

labor share.

6 Conclusion

This paper develops a model of the aggregate production function in which the parameters

of a CES production function are determined by moments of an underlying distribution of

automation technologies. Automation in the model is a form of embodied technology which

allows machines to replace workers in the production of tasks.

The balanced growth path of the model closely resembles that of a neo-classical growth

model with a CES aggregate production function with sub-unitary elasticity of substitution

and growth coming from labor augmenting technical progress, with one crucial di�erence: the

labor share in the steady state is determined by the distribution of automation technology,

and a balanced growth path exists for any strictly positive labor share. The model can

rationalize trends in the labor share as arising from transitions between balanced growth

paths, caused by periods of unbalanced growth between automation technology and human

task inputs into production.

In the empirical exercise, the model is used to measure the e�ect of automation on

industry-level labor shares in the US economy. To do so, I introduce a novel measure

of aggregate task inputs into production, constructed using CPS data and O*NET. The

model �ts the HP-�ltered trend in industry labor shares reasonably well for some important

industries, and the �tted model implies that automation was a signi�cant force driving

�uctuations in the labor share in data from 1972-2010.
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KLEMS data and model implied aggregate labor shares for 12 US industries

Figure 2: KLEMS and model implied labor shares for 12 US Industries, 1972-2010
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KLEMS data and model implied aggregate labor shares. The model aggregate is constructed using value added shares from the
data to construct the aggregate from the model-implied industry level shares.

Figure 3: KLEMS and model implied aggregate labor share, 1972-2008
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Model implied labor shares of the �tted model and a counterfactual in which the ah in manufacturing is held constant, but aw
follows its �tted path. The interpretation of the counterfactual is that the technological innovation margin of automation in
manufacturing is held constant but the endogenous scrapping margin follows its �tted path. The left panel plots the aggregate

labor share and the right panel the labor share in manufacturing.

Figure 4: Model implied labor share and model counterfactual with constant ah in manufac-
turing
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A Proofs

A.1 Proof of Lemma 1

Start with the CDF G (z).

G (z) = 1−


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

The random variable ũ = G (z) is uniformly distributed in [0, 1] (by the probability integral
transformation).

ũ = 1−


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

u = 1− ũ =


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

If ũ ∼ U [0, 1], then u = 1− ũ is also u ∼ U [0, 1]. Now, express z as a function of u:

u
1
ρ =

(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ

(
z`
zh

) 1
γ

+

(
1−

(
z`
zh

) 1
γ

)
u

1
ρ =

(z`
z

) 1
γ

((
1

zh

) 1
γ

+

((
1

z`

) 1
γ

−
(

1

zh

) 1
γ

)
u

1
ρ

)−γ
= z

By the probability integral transform, the random variable χ̃ = u
1
ρ is distributed B(ρ, 1),

χ̃ ∈ [0, 1]. It follows that the random variable χ = z
− 1
γ

h +

(
z
− 1
γ

` − z
− 1
γ

h

)
χ̃ is distributed

B(ρ, 1) with support χ ∈
[
z
− 1
γ

h , z
− 1
γ

`

]
. So z = χ−γ has distributionG (z). Now, let a ≡ 1−χ.
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Since χ ∼ B

(
ρ, 1; z

− 1
γ

h , z
− 1
γ

`

)
, a ∼ B (1, ρ; a`, ah), with a` ≡ 1 − z

− 1
γ

` and ah ≡ 1 − z
− 1
γ

h .

Finally, let ã = qa. Then, ã ∼ B (1, ρ; ã`, ãh), with a` = ã`
q
and ah = ãh

q
9, and

z =

(
q

q − ã

)γ
=

(
1

1− a

)γ
A.2 Proof of Proposition 1

I �rst show how to derive the distributionG (z) from the desired CES production function.

A.2.1 From CES Production Function to Distribution

Want a production function of the form:

Y =
(
κK

σ−1
σ + νN

σ−1
σ

) σ
σ−1

Dividing both sides by K,

Y

K
=

(
κ+ ν

(
N

K

)σ−1
σ

) σ
σ−1

De�ne y ≡ Y
K
and n ≡ N

K
.

y =
(
κ+ νn

σ−1
σ

) σ
σ−1

(36)

Express y and n as functions of w̃:

9Proof:

f (χ) =
ρ
(
χ−H− 1

γ

)ρ−1

(
L− 1

γ −H− 1
γ

)ρ
Substitute in a = 1− χ

f (x) =
ρ
(
1− a−H− 1

γ

)ρ−1

(
L− 1

γ −H− 1
γ

)ρ =
ρ ((1− ah)− a)ρ−1(

(1− ah)−
(
1− L− 1

γ

))ρ =
ρ (ah − a)ρ−1

(ah − a`)ρ

So x ∼ B (1, ρ; `, h, 1− ah). Now, let ã = qx.

f (ã) =
1

q

ρ
(
ah − ã

q

)ρ−1

(ah − a`)ρ
=

1

qρ
ρ (qah − ã)ρ−1

(ah − a`)ρ
=
ρ (ãh − ã)ρ−1

(ãh − ã`)ρ

38



y (w̃)
σ−1
σ = κ+ νn (w̃)

σ−1
σ (37)

Total derivative w.r.t. w̃,(
σ − 1

σ

)
y (w̃)−

1
σ
∂y

∂w̃
=

(
σ − 1

σ

)
νn (w̃)−

1
σ
∂n

∂w̃

It is convenient to de�ne y ≡ Y
K
and n ≡ N

K
:

y =

∫ H

w̃

zg (z) dz (38)

n =
1

q
(1−G (w̃)) (39)

From equations (38) and (39),
∂y

∂w̃
= −w̃g (w̃)

∂n

∂w̃
= −1

q
g (w̃)

Substituting,

−y (w̃)−
1
σ w̃g (w̃) = −νn (w̃)−

1
σ

1

q
g (w̃)

y (w̃)−
1
σ =

(
ν

qw̃

)
n (w̃)−

1
σ

y (w̃)−1 =
( ν

H · w̃

)σ
n (w̃)−1

y (w̃) =

(
H · w̃
ν

)σ
n (w̃)
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Substituting into equation (37):((
H · w̃
ν

)σ
n (w̃)

)σ−1
σ

= κ+ νn (w̃)
σ−1
σ(

H · w̃
ν

)σ−1

n (w̃)
σ−1
σ = κ+ νn (w̃)

σ−1
σ((

H · w̃
ν

)σ−1

− ν

)
n (w̃)

σ−1
σ = κ

n (w̃)
σ−1
σ = κ

((
H · w̃
ν

)σ−1

− ν

)−1

n (w̃) = κ
σ
σ−1

((
H · w̃
ν

)σ−1

− ν

)− σ
σ−1

= κ
σ
σ−1

((
H · w̃
ν

)σ−1

− ν

) σ
1−σ

Substitute in from equation (39),

1

H
(1−G (z)) = κ

σ
σ−1

((
H · z
ν

)σ−1

− ν

) σ
1−σ

G (z) = 1−H · κ
σ
σ−1

((
H · z
ν

)σ−1

− ν

) σ
1−σ

By de�nition, G is a CDF and z ∈ [z`, zh], so G (H) = 1 and G (L) = 0. To solve for κ and
ν, evaluate at the boundaries:

1 = G (zh)

0 = H · κ

((
H · zh
ν

)σ−1

− ν

) σ
1−σ

0 =

(
H · zh
ν

)σ−1

− ν

νσ = (H · zh)σ−1
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ν = (H · zh)
σ−1
σ (40)

Substitute in,

G (z) = 1−H · κ
σ−1
σ

( H · z
(H · zh)

σ−1
σ

)σ−1

− (H · zh)
σ−1
σ

 σ
1−σ

= 1−H · κ
σ−1
σ

(
(H · zh)

σ−1
σ
(
(H · zh)1−σ (H · z)σ−1 − 1

)) σ
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)) σ
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σ−1
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h
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z
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− 1

) σ
1−σ

Evaluate G (L):

0 = G (z`)

1 = κ
σ
σ−1 z−1

h

((
zh
z`

)1−σ

− 1

) σ
1−σ

κ
σ
σ−1 = zh

((
zh
z`

)1−σ

− 1

) σ
σ−1

κ = z
σ−1
σ

h

((
zh
z`

)1−σ

− 1

)
(41)

Substitute in,
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Rearrange:

G (z) = 1−

1−
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(
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z

)1−σ
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)1−σ


σ

1−σ

With ρ = σ
1−σ and γ = σ

1−σ + 1 = 1
1−σ ,

G (z) = 1−

1−
1−

(
z`
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γ
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(
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A.2.2 The CES production function in normalized form

Substitute ν and κ from equations (40) and (41) into the CES production function (37):
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y =
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κ+ νn

σ−1
σ

) σ
σ−1
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) σ
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σ
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Multiply both sides by K,

Y =
(
(zh)

1−σ (z`)
σ) (αK σ−1

σ + (1− α) (H · n)
σ−1
σ

) σ
σ−1

Y = A
(
αK

σ−1
σ + (1− α) (H · n)

σ−1
σ

) σ
σ−1

Where A = (zh)
1−σ (z`)

σ; α = 1−
(
z`
zh

)1−σ
. Now, substitute in the de�nitions of H and L.
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A.2.3 A, α in terms of distribution of a

A = (zh)
1−σ (z`)

σ

=

((
1

1− ah

) 1
1−σ
)1−σ((

1

1− a`

) 1
1−σ
)σ
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(
1
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=
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σ
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1
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1
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)
(

1
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)
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1− a`
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1− a`
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ah − a`
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A.2.4 Labor share

Labor share of the CES production function:

LS = (1− α)

(
Y

A ·H ·N

) 1−σ
σ
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Substituting in for A and α gives:

LS = (1− ah)
(w
H

)1−σ

A.2.5 From Distribution to CES Production Function
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w/H

zh

)1−σ
) σ

1−σ


=


(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ zh(1−
(
w/H

zh

)1−σ
) σ

1−σ


= (zh)
1−σ (z`)

σ

1−
(
w/H
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

= (zh)
1−σ (z`)

σ

 1−
(
z`
zh

)1−σ

1−
(
w/H
zh

)1−σ


σ
σ−1
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Note

1−G (w̃) =


(
z`
w̃

)1−σ −
(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

(H · n)
1−σ
σ =

(
zh
w/H

)1−σ (
z`
zh

)1−σ
− (1− α)

α

(H · n)
1−σ
σ =

(
zh
w/H

)1−σ
(1− α)− (1− α)

α

α (H · n)
1−σ
σ + (1− α)

1− α
=

(
zh
w/H

)1−σ

(
zh
w/H

)1−σ

= 1 +
α

1− α
(H · n)

1−σ
σ(

zh
w/H

)1−σ

=
α

(1− α) (H · n)
σ−1
σ

+ 1

=
α + (1− α) (H · n)

σ−1
σ

(1− α) (H · n)
σ−1
σ(

w/H

zh

)1−σ

=
(1− α) (H · n)

σ−1
σ

α + (1− α) (H · n)
σ−1
σ

1−
(
w/H

zh

)1−σ

= 1− (1− α) (H · n)
σ−1
σ

α + (1− α) (H · n)
σ−1
σ

=
α + (1− α) (H · n)

σ−1
σ − (1− α) (H · n)

σ−1
σ

α + (1− α) (H · n)
σ−1
σ

=
α

α + (1− α) (H · n)
σ−1
σ

Substitute in
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y = (zh)
1−σ (z`)

σ

 1−
(
z`
zh

)1−σ

1−
(
w/H
zh

)1−σ


σ
σ−1

= A

 α
α

α+(1−α)(H·n)
σ−1
σ

 σ
σ−1

= A
(
α + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

Multiply both sides by K:

Y = A
(
αK

σ−1
σ + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

B Derivations

B.1 Task production

B.1.1 Aggregate and machine task production

Worker task input λi at �rm i:

λi = (q − ãi) yi = q (1− ai) yi
= q (1− ai) z (ai) k (ai)

= qK (1− ai) z (ai) f (ai)

= q
HN

1− F (aw)
(1− ai) z (ai) f (ai)

= qHN (1− ai)
(

1

1− ai

)ρ+1
f (ai)

1− F (aw)

= qHN

(
1

1− ai

)ρ
f (ai)

1− F (aw)

= qHN

(
1

1− ai

)ρ
(ah − a)ρ−1

(ah − aw)ρ

Where I have used k (a) ≡ Kf (a), K = HN

1−G( wH )
= HN

1−F (aw)
, F (a) =

(
ah−a
ah−a`

)ρ
, z (a) =
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(
1

1−a

)ρ+1

Λ =

∫
λi di

HN
= q

∫ ah

aw

(
1

1− a

)ρ
(ah − a)ρ−1

(ah − aw)ρ
da

Noting that
∫ ah
aw

(
1

1−a

)ρ (ah−a)ρ−1

(ah−aw)ρ
da = 1

1−F (aw)

∫ ah
aw

(1− a) dFa = EF (1− a|a > aw), it follows
that:

Λ = qEF [1− a|a > aw]

Similarly, machine task input µi at �rm i:

µi = ãiyi = qaiyi

= qHNai

(
1

1− ai

)ρ+1
(ah − a)ρ−1

(ah − aw)ρ

M =

∫
µi di

HN
= q

∫ ah

aw

a

(
1

1− a

)ρ+1
(ah − a)ρ−1

(ah − aw)ρ
da

And as above,
M = qEF [a|a > aw]

The ratio of aggregate worker to machine task inputs:

Λ

M
=

∫ ah
aw

(
1

1−a

)ρ
(ah − a)ρ−1 da∫ ah

aw
a
(

1
1−a

)ρ+1
(ah − a)ρ−1 da

(42)

Taking a �rst order expansion around q, ah and aw,

∆ log Λ = ∆ log q + χΛ,h∆ log ah + χΛ,w∆ log aw (43)

∆ logM = ∆ log q + χM,h∆ log h+ χM,w∆ log aw (44)

Subtracting 44 from 43:

∆ log Λ−∆ logM = (χΛ,h − χM,h) ∆ log ah + (χΛ,w − χM,w) ∆ log aw

= χh,t∆ log ah,t + χw,t∆ log aw,t

B.1.2 Measuring change in machine tasks ∆ logM in the data

To approximate ∆ logM in the data, I designate a subset of tasks as automatable. I
denote the sum of these tasks at time t as Λ̂M,t, and I assume that the level change in
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machine tasks is equal to the (negative of) the level change change in automatable human
tasks:

M̂t − M̂t−1 = −
(

Λ̂M,t − Λ̂M,t−1

)
Some algebra to get percentage changes in M̂ and Λ̂,

M̂t − M̂t−1

M̂t−1

= −Λ̂M,t−1

M̂t−1

Λ̂M,t − Λ̂M,t−1

Λ̂M,t−1

Approximating percentage changes with log di�erences,

∆ log M̂t = −Λ̂M,t−1

M̂t−1

∆ log Λ̂M,t

And �nally, substituting
Λ̂M,t−1

M̂t−1
=

Λ̂M,t−1

Λ̂t−1

Λ̂t−1

M̂t−1
,

∆ log M̂t = −Λ̂M,t−1

Λ̂t−1

Λ̂t−1

M̂t−1

∆ log Λ̂M,t

I measure the ratio
Λ̂M,t−1

Λ̂t−1
directly from the data and Λ̂t−1

M̂t−1
by computing the following

integrals:

Λ̂t−1

M̂t−1

=

∫ ĥt−1

ŵt−1

(
1

1−a

)ρ̂ (
ĥt−1 − a

)ρ̂−1

da∫ ĥt−1

ŵt−1
a
(

1
1−a

)ρ̂+1
(
ĥt−1 − a

)ρ̂−1

da

Where ρ̂ = σ̂
σ̂−1

.

B.2 Investment distribution in steady state

C Mathematical Appendix

C.1 Characterizing G (z)

The CDF of z is:

G (z) = 1−

1−
1−

(
z`
z

) 1
γ

1−
(
z`
zh

) 1
γ


ρ
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The CDF of the truncated Pareto is F
(
z; 1

γ
, z`, zh

)
=

1−( z`z )
1
γ

1−
(
z`
zh

) 1
γ
, so:

G (z) = 1− (1− F (z))ρ (45)

The survival function Ḡ (z) = 1−G (z) is

Ḡ (z) = F̄ (z)ρ

The PDF of z is:

g (z) = ρf (z) (1− F (z))ρ−1 (46)

C.1.1 Moments and Hazard Rate of G (z)

With ρ = σ
1−σ , the mean of z is

EG (z) = H1−σLσ (47)

The hazard rate of G is

g (z)

1−G (z)
=

σ

1− σ
f (z)

1− F (z)

= σ
z1−σ
h

z
(
z1−σ
h − z1−σ

)
g (z)

1−G (z)
=

σ

z

(
1−

(
z
zh

)1−σ
)

So the hazard rate of G is equal to a constant times the hazard rate of the truncated Pareto
distribution with tail parameter 1 − σ. If σ > 1

2
(σ < 1

2
), G (z) has higher (lower) hazard

rate than F (z)for all z, in which it has thinner (fatter) tails. For σ = 1
2
, the hazard rates

(and hence distributions) are identical, so G (z) is exactly the truncated Pareto for σ = 1
2
.
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